Gargrave CE (VC) Primary School Maths Calculation Policy

Progression in Calculations

Concrete Pictorial Abstract
Addition
Concrete Pictorial Abstract Addition
Concrete Pictorial Abstract Addition

Addition	
$\mathbf{+ = \text { signs and missing numbers }}$	
MENTAL	
Adding 1（eg． $7+1$ a nd 1 +7 ）	
Doubles ofnumbers to 5	
（eg 4＋4）Adding 2 （eg $4+2$ and $2+4$ ）whole	2

（eg 4＋4）Adding 2 （eg 4＋2 and 2＋4）
Number bonds to 10 （eg $8+2$ and $2+8$ ）
Alongside：Pa rtitioning $2,3,4,5,6$ a nd 10 Children need to understand the concept of equality before using the＇$=$＇sign．Calculations should be written either side of the equality sign so that the sign is not just interpreted as＇the answer＇．
$2=1+1$
$2+3=4+1$
Missing numbers need to be placed in all possible places．

Counting and Combining sets of Objects
Combining two sets of objects（aggregation） which will progressonto adding on to a set （a ugmentation）

Understanding of counting on with a numbertrack．

Understanding of countingon with a numberline （supported by models and images）．
$6+5$

Start with the bigger number and partition the smaller number to make 10 ．

Missing number problems e．g $14+5=10+\square \quad 32+\square+\square=100$ $35=1+\square+5$
MENTAL
Adding 10，0，doubles，near doubles，partitioning 7，8，9，bridging $(8+4)$ compensating $(9+4=10+4-1)$ ．Look for patterns a nd use partitioning a nd known additive facts．Partition into tens and ones then add and recombine／regroup／exchanging．
It is valuable to use a range of re presentations（also see Y1）． Continue to use numberlines to deve lop understanding of： Counting on intens and ones
$23+12=23+10+2$
$=33+2$
$=35$

Partitioning and bridging tnrougn $\perp \mathrm{U}$ ．
The steps in a ddition often bridge through a multiple of 10 e．g．Chil dren should be able to partition the 7 to relate adding the 2 and then the 5.
$8+7=15$

Adding 9 or 11 byadding 10 a nd adjusting by 1 e．g．Add 9 by a dding 10 a nd adjusting by 1 $35+9=44$

Towards a Written Method

Partitioning in different ways and recombine

47＋25

Leading to
72
期明明目口

$$
\begin{array}{r}
40+7 \\
+20+5 \\
\hline 60+1
\end{array}
$$

Missing number problems using a range of equations but with appropriate，larger numbers．
MENTAL
Mentally partition into hundreds，tens，ones then add， recombine／regroup with exchanging．

Partition into tens and ones

Partition both numbers and recombine．

Count on by partitioning the second number onlye．g． $247+125=247+100+20+5$

$$
=347+20+5
$$

$$
=367+5
$$

$$
\text { = } 372
$$

Children need to be secure a dding multiples of 100 and 10 to a ny three－digit number including th ose that are not multiples of 10 ．

Towards a Written Method

Introduce expanded column a ddition modelled with pla ce value counters（Dienes could be used for those who need a less abstract re presentation）

$$
\begin{aligned}
& 200+40+7 \\
& \frac{100+20+5}{300+60+12}=372
\end{aligned}
$$

$$
247
$$

$$
\begin{array}{r}
241 \\
+125 \\
\hline 12
\end{array}
$$

$$
60
$$

$$
\frac{300}{372}
$$

Leading to children understanding the exchange between tens and ones．

Some children may begin to use a formal columnar algorithm，initially introduced alongside the expanded method．The formalmethod should be seen as a more streamlined version of the expanded method，not a new method．

$$
\begin{array}{r}
247 \\
+125 \\
\hline 372 \\
\hline 10
\end{array}
$$

Concrete Pictorial Abstract Addition

Concrete Pictorial Abstract Addition

Concrete Pictorial Abstract Addition

Missing number/digit problems:
Mental methods Mentally partitioning then recombine/regroup including exchanging. Number lines and bar models should continue to be used to help with problem solving.

Written methods (progressing to 4-digits)

Expanded column addition modelled with place value counters, progressing to calculations with 4 digitnumbers.

$200+40+7$
$\frac{100+20+5}{300+60+12}=372$
247
$+125$
60

Compact written method

Extend to numbers with at least four digits.

Children should be able to make the choice of reverting to expanded methods if experiencing any difficulty.
Extend to up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits).
1
72.8
$+54.6$
127.4

Missing number/digit problems:
Mental methods Mentally partitioning then
recombine/regroup including exchanging. Number lines and bar models should continue to be used to help with problem solving. Children should practise with increasingly large numbers to aid fluency
e.g. $12462+2300=14762$

Written methods (progressing to more than 4-digits)

Progression should be when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm.

111
172.83
54.68
$+\quad 5$
227.51

Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers.

Missing number/digit problems:
Mental methods Mentally partitioning then recombine/regroup including exchanging. Number lines and bar models should continue to be used to help with problem solving.

Written methods

Progression to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured.
Continue calculating with decimals, including those with different numbers of decimal places

2	3	3	6	1
	9	0	8	0
5	9	7	7	0
+	1		3	0
9	3		5	1
2	1		2	

Problem Solving

Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding.

Concrete Pictorial Abstract Subtraction	Concrete Pictorial Abstract Subtraction	Concrete Pictorial Abstract Subtraction
Missing number problems e.g. $7=\square-9$; $20-\square$ $=9 ; 15-9=\square ; \square-\square=11 ; 16-0=$ MENTAL Adding 1, 2,doubling, bonds to 10, partitioning. Use concrete objects and pictorial representations. If a ppropriate, progress from using number lines with every number shown to number lines with significant numbers shown. Understand subtraction as take-away: Understand subtraction as finding the difference: The above model would be introduced with concrete objects which children can move (including cards with pictures) before progressing to pictorial representation. The use of other images is also valuable for modelling subtraction e.g. Numicon, bundles of straws, Dienes apparatus, multi-link cubes, bead strings	Missing number problems e.g. $52-8=\square ; \square-20=25 ; 22=\square-$ $21 ; 6+\square+3=11$ MENTAL It is va luable to use a range of representations. Continue to use numberlines to model take-away a nd difference. E.g. The link between the two may be supported by a n image like this, with 47 being taken away from 72 , leaving the difference, which is 25 . The bar model should continue to be used, as well as images in the context of measures. Towards written methods Recording addition and subtraction in expanded columns can support understanding of the quantity aspect of place value and prepare for efficient written methods with larger numbers. The numbers may be represented with Dienes apparatus. E.g. 75-42 Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Missing number problems e.g. $\square=43-27$; $145-\square=$ 138; 274-30 = ■; 245- - = 195; 532-200 = ロ; 364153 = \square Mental Numberlines, bar model should continue to be used to help with problem solving Children should make choices about whether to use complementary a ddition or counting back, depending on the numbers involved. Written methods (progressing to 3-digits) Introduce expanded column subtraction with no decomposition, modelled with place value counters (Dienes could be used for those who need a less abstract representation) $\begin{array}{r}908 \\ -305 \\ \hline 603 \\ \hline\end{array}$ For some children this will lead to exchanging, modelled using place value counters (or Dienes). A number line and expanded column method may be compared next to each other. Some children may begin to use a formal columnar algorithm, initially introduced alongside the expanded method. The formalmethod should be seen as a more streamlined version of the expanded method, not a new method.

Concrete Pictorial Abstract Subtraction

Concrete Pictorial Abstract Subtractio
Missing number/digit problems: $456+\square=710 ;$
;

Missing number/digit problems: $456+\square=710$; $1 \square 7+6 \square=200 ; 60+99+\square=340 ; 200-90-80=$ $\square ; 225-\square=150 ; \square-25=67 ; 3450-1000=\square$; $\square-$ $2000=900$
Mental Apply what they know using inverse. Doubling, bonds, partitioning. Number lines and bar models should continue to be used to help with problem solving.

Written methods (progressing to 4 -digits)

Expanded column subtraction with decomposition, modelled with place value counters, progressing to calculations with 4-digit numbers.

If understanding of the expanded method is secure, children will move on to the formal method of decomposition, which again can be initially modelled with place value counters.

Concrete Pictorial Abstract Subtraction

Missing number/digit problems: $6.45=6+0.4+\square ; 119-\square$ $=86 ; 1000000-\square=999000 ; 600000+\square+1000=671$ 000; $12462-2300=\square$
Mental methods Number lines and bar models should continue to be used to help with problem solving. Written methods (progressing to more than 4-digits) When understanding of the expanded method is secure, children will move on to the formal method of decomposition, which can be initially modelled with place value counters.

Concrete Pictorial Subtraction

Missing number/digit problems: a and \# each stand for a different number. \# = 34. \# + \# = $\quad+\square$ + \#. What is the value of \square ? What if \# = 28? What if \# = 21
$10000000=9000100+\square$
$7-2 \times 3=\square$; $(7-2) \times 3=\square$; $(\square-2) \times 3=15$
Mental methods Number lines and bar models should continue to be used to help with problem solving.

Written methods

As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with decomposition to be secured.

Teachers may also choose to introduce children to other efficient written layouts which help develop conceptual understanding. For example:

Progress to calculating with decimals, including those with different numbers of decimal places.

Continue calculating with decimals, including those with different numbers of decimal places.

$\div=$ signs and missing numbers

$6 \div 2=\square \quad \square=6 \div 2$
$6 \div \square=3 \quad 3=6 \div \square$
$\square \div 2=3 \quad 3=\square \div 2$
$\square \div \nabla=3 \quad 3=\square \div \nabla$

Mental methods

Applying inverse of year group multiplication facts.
Know and understand sharing a nd grouping-introducing children to the \div sign.

Child ren should continue to use grouping a nd sharing for division using practical apparatus, a rrays and pictorial representations.

Grouping using a numberline

Group from zero in jumps of the divisorto find our 'how many groups of 3 a re there in 15 ?'.
$15 \div 3=5$

Use of arrays as a pictorial representation for division. $15 \div 3=5$ There are 5 groups of 3 .
$15 \div 5=3$ There are 3 groups of 5 .

Children should be able to find $1 / 2$ a nd $1 / 4$ and simple fractions of objects, numbers a nd quantities.
Children must have secure counting skills- being able to confidently count in $2 \mathrm{~s}, 5$ s and 10 s .
Children should be given opportunities to reason about what they notice in number patterns.
Mental methods
Applying inverse of year group multiplication facts Group AND share small quantities- understanding the difference between the two concepts.

Sharing

Develops importance of one-to-one correspondence.

$$
15 * 5=3
$$

15 shared between 5

Children should be taught to share using concrete apparatus.

Grouping

Children should apply the ir counting skills to develop some understanding of grouping.

Continue work on arrays. Support children to understand how multiplication and division are inverse. Look at an array- what do you see?

20

[^0]
$\doteqdot=$ signs and missing numbers

Continue using a range of equations as in year 2 but with a ppropriate numbers.
Mental methods
Applying inverse of year group multiplication facts. Understanding re peated subtraction to find how many groups of a number are in the whole.

Grouping

How many 6's a re in 30 ?
$30 \div 6$ can be modelled as:

Becoming more efficient using a numberline

Children need to be able to partition the dividend in different ways.
$48 \div 4=12$

$+8$
2 groups
\qquad 10 groups

Sha ring - 49 s hared between 4 . How many left over? Grouping-How many 4s make 49. How many a re left over?

Place value counters can be used to support children apply their knowledge ofgrouping.
Forexample:
$60 \div 10=$ How many groups of 10 in 60 ?
$600 \div 100=$ How many groups of 100 in 600 ?

Concrete Pictorial Abstract Multiplication

Concrete Pictorial Abstract Multiplication

Concrete Pictorial Abstract Multiplication

Understand multiplication is related to doubling and combing groups of the same size (repeated addition)

Mental methods - count in equal groups

Washingline, and other practical resources for counting. Concrete objects. Numicon; bundles of straws, bead strings

$5+5+5+5+5+5=30$
$5 \times 6=30$
5 multiplied by 6
6 groups of 5
6 hops of 5

Problem solving with concrete objects (including money and measures

Use cuissenaire and bar method to develop the vocabulary relating to 'times' -
Pick up five, 4 times
Use arrays to understand multiplication can be done in any order (commutative)

Expressing multiplication as a number sentence usingx
Using understanding of the inverse and practical resources to solve missing number problems.
Mental methods - Multiplying numbers by 2, addition of 1,2,3 digit numbers. Counting forwards and backwards in multiples of numbers.

$7 \times 2=\square$	$\square=2 \times 7$
$7 \times \square=14$	$14=\square \times 7$
$\square \times 2=14$	$14=2 \times \square$
$\square x \bigcirc=14$	$14=\square x \bigcirc$

Devel op understanding of multiplication using array a nd number lines. Include multiplications not in the 2,5 or 10 times tables.

Begin to develop understanding of multiplication as scaling (3

$4 \times 3=12$

Doubling numbers up to $10+10$ Link with understanding scaling Using known doublesto workout double 2d numbers

(double 15 = double 10 + double 5)

Towards written methods

Use jottings to develop an understanding of doubling two digit numbers.

Link arrays to area of rectangles.

Missing number problems
Continue with a range of equations but with a ppropriate numbers.

Mental methods

Doubling 2 digit numbers using partitioning Relate re peated addition to multiplicative facts. Use rea soning strategies based on known facts eg 6×4 is 5×4 add one more group of 4 . Instant recall. Use knowledge of multiplication facts to increase number sizes.

Demonstrating multiplication on a number line jumping in larger groups of amounts
$13 \times 4=10$ groups $4=3$ groups of 4

Written methods

Developing written methods using understanding of visual images

Develop onto the grid method

	10	8
3	30	24

Give children opportunities for children to explore this and deepen understanding using Dienes apparatus and place value counters
$18 \times 3=$

x	10	8
3	30	24

$30+24=54$

Concrete Pictorial Abstract Multiplication

Concrete Pictorial Abstract Multiplication
Concrete Pictorial Abstract Multiplication

Continue with a range of equations but with
appropriate numbers. Also include equations with
missing digits

$\square 2 \times 5=160$

Mental methods

Counting in multiples of 6, 7, 9, 25 and 1000, and steps of $1 / 100$. Use knowledge of multiplication facts to increase number size.

Solving practical problems where children need to scale up. Relate to known number facts. (e.g. how tall would a 25 cm sunflower be if it grew 6 times taller?)

Written methods (progressing to 3d x 2d)

Children to embed and deepen their understanding of the grid method to multiply up $2 \mathrm{~d} \times 2 \mathrm{~d}$. Ensure this is still linked back to their understanding of arrays and place value counters.

Continue with a range of equations but with appropriate numbers. Also include equations with missing digits

Mental methods

X by 10, 100, 1000 using moving digits ITP. Use knowledge of multiplication facts to increase number size.

Use practical resources and jottings to explore equivalent statements (e.g. $4 \times 35=2 \times 2 \times 35$)

Recall of prime numbers up 19 and identify prime numbers up to 100 (with reasoning)

Solving practical problems where children need to scale up. Relate to known number facts.

Identify factor pairs for numbers

Written methods (progressing to $4 \mathrm{~d} \times 2 \mathrm{~d}$)

Long multiplication using place value counters
Children to explore how the grid method supports an understanding of long multiplication (for $2 \mathrm{~d} \times 2 \mathrm{~d}$)

10	8	
10		
10	100	80
3	30	24

Continue with a range of equations but with appropriate numbers. Also include equations with missing digits

Mental methods

Identifying common factors and multiples of given numbers. Solving practical problems where children need to scale up. Relate to known number facts. Instantrecall for efficiency.

Written methods

Continue to refine and deepen understanding of written methods including fluency for using long multiplication

3	
1342	
X	18
13420	
10736	
24156	
	1
32	
+ 24	
8	(4×2)
120	(4×30)
40	(20×2)
600	(20×30)
768	

[^0]: $20 \div 5=$?
 $5 \times ?=20$

